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Abstract

We introduce a family of multiscale, orientation-

selective, non-parametric features (“ranklets”) modelled

on Haar wavelets. We clarify their relation to the Wilcoxon

rank-sum test and the rank transform and provide an effi-

cient scheme for computation based on the Mann-Whitney

statistics. Finally, we show that ranklets outperform other

rank features, Haar wavelets, SNoW and linear SVMs

(based on independently published results) in face detection

experiments over the 240045 test images in the MIT-CBCL

database.

1. Introduction

The expression “non-parametrics” denotes statistical

techniques that circumvent the problem of making assump-

tions about the underlying distribution of the data. To this

category belong some of the classification algorithms re-

cently developed within learning theory, such as Support

Vector Machines (SVMs) [8]. However, the term is tradi-

tionally used in connection with statistical methods based

on ranks [7].

Closely related to rank statistics are rank based features,

that have been widely applied in the context of stereo cor-

respondence [2, 6, 9] among others. Their main advantages

consist in robustness to outliers and invariance under mono-

tonic transformations, for example brightness and contrast

changes and gamma correction.

In this paper we introduce a family of multiscale rank

features (“ranklets”) that show wavelet-style directional se-

lectivity and are therefore well suited to characterise ex-

tended patterns with a complex geometry, such as for in-

stance faces. We discuss the relation between our fea-

tures, the rank transform of Zabih and Woodfill [9] and the

Wilcoxon rank-sum test underlying it. We also provide an

efficient scheme for the computation of ranklets based on

the Mann-Whitney statistics.

We report face detection experiments over the 24
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045

test images of the MIT-CBCL face database. The perfor-

mance of ranklets is compared with the rank and census

transforms as well as with Haar wavelets, SVMs and the

SNoW (Sparse Network of Winnows) algorithm, also ac-

cording to results published by other research groups. Ex-

periments show that ranklets significantly improve perfor-

mance, thus proving to be a promising technique for pattern

recognition on high noise, low resolution images.

2. The rank transform and other rank features

Given a set of N observations, by “ranking” we mean

a permutation � of the integers from 1 to N that expresses

the relative order of the observations. In this work we will

be mainly concerned with a grey-level image I and we will

indicate by �

W

(~x) the rank of I(~x) among the intensity

values of a suitably sized window W centred on pixel ~x

(to simplify matters, we will assume that no two intensity

values are equal; ties can be broken at random when they

occur).

The rank transform [9] makes direct use of � by assign-

ing to each pixel ~x the value of its rank: �(~x) = �

W

(~x).

This corresponds to the number of pixels in the local neigh-

bourhood W whose intensity is lower than I(~x). The rank

transform � is therefore a measure of the relative local

brightness. A closely related similarity measure is Spear-

man’s correlation coefficient r
s

, that is proportional to the

sum of the squared differences of rankings �W
1

, �W
2

over

corresponding neighbourhoods of two images I

1

(~x) and

I

2

(~y):
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Other rank features are defined directly in terms of pair-

wise comparisons of intensity values. We cite the census

transform [9]: given a pixel ~x centred in W , let f~x
i

g =

W n f~xg. Then the census transform associates to ~x the

list 
i

(~x) defined as follows: 
i

(~x) = 1 if I(~x) < I(~x

i

), 0

otherwise. An example of a correlation measure based on

pairwise comparisons is Kendall’s � [6].
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Figure 1. The three Haar wavelets h

1

(~x), h
2

(~x)

and h

3

(~x) (from left to right). Letters in

parentheses refer to “treatment” and “con
trol” pixel sets (see Section 4).

3. The Wilcoxon rank-sum test and the rank

transform

The rank transform is closely related to the Wilcoxon

rank-sum test for the comparison of two treatments [7].

Suppose that N quantities are split in two groups of n

“treatment” and m “control” observations (according to the

standard terminology). We are required to state whether

the treatment observations are significantly higher than the

controls. To this purpose we define the Wilcoxon rank

sum statistics W
s

as the sum of treatment ranks: W
s

=

P

n

i=1

�(i). The treatment values are then judged to be sig-

nificantly higher than the controls if the Wilcoxon statistics

is above a critical value � , W
s

> � . The value of � deter-

mines the confidence level of the test.

The rank transform is equivalent to W
s

when n = 1,

that is when only one treatment observation is given. To

show this, we identify the treatment observation with I(~x)

and the controls with the m = N � 1 values I(~x
i

), where

f~x

i

g 2W nf~xg and W is an N-pixel window centred on ~x.

It follows thatW
s

= �

W

(~x) = �(~x). As a consequence, bi-

narization of the rank transform by thresholding (�(~x) ? � )

has a specific statistical meaning, in that it amounts to fix-

ing the critical value of the underlying Wilcoxon test. In

other words, a pixel in the binarized rank transform is set

to one if and only if its intensity is found to be larger than

the intensity of the adjacent pixels in W with a confidence

level specified by � . Experimental results reported in Sec-

tion 5 show that binarization of the rank transform can lead

to improved performance.

4. Ranklets: a family of wavelet-style rank fea-

tures

The close analogy between the Wilcoxon test and the

rank transform can be carried further by devising new image

descriptors that correspond to a number of “treatment” pix-

els n greater than 1. A convenient choice consists in split-

ting theN pixels inW in two groups of size n = m = N=2,

thus assigning half of the pixels to the “treatment” group

and half to the “control” group. This introduces a new de-

gree of freedom, namely the geometric arrangement of the

two regions in W . For any of the
�

N

n

�

possible choices

of treatment pixels, W
s

will provide us with a different

characterisation of the local neighbourhood. This wide ar-

bitrariness can be exploited to obtain orientation selective

features. To this purpose, we define the “treatment” and

“control” groups starting from the three Haar wavelets [3]

h

j

(~x); j = 1; 2; 3 displayed in Figure 1. We identify the lo-

cal neighbourhood W on which the ranking is performed

with the support of the h

j

. We then define the set of

“treatment” pixels T
j

as the counter-image of 1 under h
j

:

T

j

= h

�1

j

(+1), and the set of “control” pixels C
j

as the

counter-image of �1: C
j

= h

�1

j

(�1). For each partition

of W , W = T

j

[ C

j

, we then compute the value of the

Wilcoxon statistics as Wj

s

=

P

n

i=1

�

W

(~x

i

), with ~x

i

2 T

j

.

We can conveniently replace W

j

s

with the equivalent

Mann-Whitney statistics W
j

XY

=W

j

s

�n(n+1)=2, which

has an immediate interpretation in terms of pixel compar-

isons. As can be easily shown [7], W
j

XY

is equal to the

number of pixel pairs (~x
p

; ~y

q

) with ~x

p

2 C

j

and ~y

q

2 T

j

such that I(~x
p

) < I(~y

q

). Its possible values therefore range

from 0 to the number of pairs (~x
p

; ~y

q

) 2 T

j

� C

j

, which

is mn = N

2

=4. Notice however that these pairwise com-

parisons are never carried out explicitly; the value of W
j

XY

is obtained by ranking the pixels in W , which only requires

N logN operations.

We can now define our image features, or “ranklets”, as

R

j

=

W

j

XY

mn=2

� 1: (2)

The geometric interpretation of the R
j

is straightforward

in terms of the properties of W
j

XY

and of the structure of

the h
j

. Consider for instance R
1

and suppose that the local

neighbourhoodW straddles a vertical edge, with the darker

side on the left (where C
1

is located) and the brighter side

on the right (corresponding to T

1

). Then R
1

will be close

to +1, as many pixels in T

1

will have higher intensity val-

ues than the pixels in C

1

. Conversely, R
1

will be close

to �1 if the dark and bright side of the edge are reversed.

Horizontal edges or other patterns with no global left-right

variation of intensity will give a value close to zero. There-

fore, R
1

will respond to vertical edges in the images. By a

similar argumentR
2

will detect horizontal edges, whileR
3

will be sensitive to corners formed by horizontal and ver-

tical lines. These response patterns closely match those of

the three Haar wavelets h
j

.

Due to the close correspondence between Haar wavelets

and ranklets, the multiscale nature of the former directly

extends to the latter. To each translation and scaling of the

h

j

specified by (~x

0

; s) we associate the sets of treatment



Figure 2. Training faces (1st row), test faces

(2nd row), and test nonfaces (3rd row) from
the MITCBCL set. Notice how a few of the test

faces in the database are incorrectly framed
(2nd row, right).

and control pixels defined by

T

j;(~x

0

;s)

= f~x jh

j

((~x� ~x

0

)=s) = +1g ; (3)

C

j;(~x

0

;s)

= f~x jh

j

((~x� ~x

0

)=s) = �1g : (4)

We can now compute the value of R
j

(~x

0

; s) over the lo-

cal neighbourhood W

(~x

0

;s)

= T

j

[ C

j

, with m = n =

#W

(~x

0

;s)

=2.

5. Experimental results

We present the results of face detection experiments over

the images of the MIT-CBCL face database [4], that consists

of low-resolution grey level images (19� 19 = 361 pixels)

of faces and non-faces. A training set of 20429 faces and a

test set of 472 faces and 230573 non-faces are provided. All

facial images nearly occupy the entire frame; considerable

pose changes are represented (Figure 2). The negative test

images were selected by a linear SVM classifier as those

that looked most similar to faces among a much larger set

of patterns [5]. The database also contains a set of 40548

non-faces intended for training. In our experiments we have

discarded this training set of non-faces, since the notion of

“non-face prototypes” appears to be problematic.

For the sake of simplicity, as well as to evidence the

descriptive power of the features employed, we adopted a

distance-based classification scheme. For each rank based

or other transform, every image in the training and test sets

is encoded as a (normalised) feature vector. A test image is

recognised as a face if the distance from its corresponding

vector to the closest face example is smaller than a thresh-

old � . The metric employed is the city block distance, that

specialises to the Hamming distance for the case of the bi-

narized rank transform.
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Figure 3. ROC curves for various types of fea

tures. The “step” appearance of the graph for
the binarized rank transform is due to the lim

ited range of values of the Hamming distance.

ROC curves for ranklets, the rank and census transforms

and Haar wavelets are shown in Figure 3. Local neighbour-

hoods W of optimal size have been employed for ranklets

and the rank transform; the choice of a 3 � 3 window for

the census transform appeared to be natural. The window

W has been centred at all image locations compatible with

its size, yielding for instance 225 features for the rank trans-

form and 256�3 = 768-dimensional feature vectors for the

case of ranklets. In the case of multiscale ranklets, a total of

309� 3 = 927 features has been extracted using 5 different

sizes for W (note that we are mapping the originally 361-

dimensional images to a higher dimensional feature space).

As can be seen, ranklets outperform all the other types

of features we tested. The census transform and the bina-

rized rank transform also yield good results. Remarkably,

conventional Haar wavelets achieve a rather poor perfor-

mance on these low-resolution, noisy images compared to

the rank-based approaches. Equal Error Rates are reported

in Table 1.

According to [1], both Linear Support Vector Machines

and SNoW yield EERs in excess of 20% on the same

database. Only polynomial SVMs show a performance

comparable to ranklets, and this in spite of the fact that the

4
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548 negative training examples have been used (which is

not true of our case).



Type of features EER

Ranklets (multiscale) 15.9 %

Ranklets (4x4 window) 16.7 %

Census transform 20.3 %

Rank transform (binarized) 21.6 %

Rank transform 31.4 %

Haar wavelets 41.8 %

Table 1. EER as a function of the features em

ployed.

6. Conclusions

We have introduced a new family of rank features, called

“ranklets”. Closely modelled on Haar wavelets, ranklets

inherit from them the orientation selectivity and the multi-

scale nature. Their definition in terms of the Mann-Whitney

statistics provides a connection to the Wilcoxon rank-sum

test, an efficient computing scheme and an intuitive inter-

pretation in term of pairwise comparisons of pixel intensity

values.

Experimental results over a test set of 24

0

045 images

show that ranklets outperform a wide range of other algo-

rithms, notably including Haar wavelets, SNoW and linear

SVMs applied directly to the intensity data. In future work

we plan to investigate the behaviour of SVMs applied to the

classification of feature vectors of ranklets.
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